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Abstract. We discuss an improvement to the expression for the heavy-ion reaction cross-section proposed
long ago by Karol (P.J. Karol, Phys. Rev. C 11, 1203 (1975)) which describes the two-ion interaction
through the nucleon-nucleon collisions in their overlap region when they come into contact. This improve-
ment consists in considering the limitations due to the Pauli principle, which at low incident energies
forbids many nucleon interactions, and in including a Coulomb factor. The final expression for which we
also propose a new parametrization reproduces satisfactorily the known reaction cross-sections for many
ion combinations using a global set of parameters. A decomposition of the reaction cross-section into the
contributions of peripheral interactions, as a function of the impact parameter, is also discussed.

PACS. 25.70.-z Low and intermediate energy heavy-ion reactions

1 Introduction

The reaction cross-section, σR, is a basic information
in nuclear dynamics. However, in heavy-ion interactions,
for many interaction partners, σR is not experimentally
known and one must resort to theoretical estimations.
These could be done with the optical model which, how-
ever, for describing the real and imaginary potentials re-
quires sets of parameters for which, in most cases, rac-
comended prescriptions do not exist. For this reason one
often resorts to suitably parametrized semiempirical ex-
pressions of σR such as those, for instance, based on
the Bradt-Peters or Renberg forms [1–4] or the Fresnel
model [5–7]. Other estimates of σR are based on more
elaborated calculations. Among these we deem especially
interesting those based on the hypothesis that the inter-
action of two nuclei may be described by means of the in-
teractions of their constituent nucleons (see, for instance,
[8–19]). In particular, the result of Karol [8] seems attrac-
tive to us (which has been further elaborated by other
authors [14–17,19]); he was able to produce a simple ana-
lytical expression of σR using a Gaussian density distribu-
tion for the interacting ions. Another interesting approach
was worked out by the authors of [18] using a different ap-
proximation for the nuclear density distributions. In this
paper we wish to discuss some ameliorations to the Karol’s
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expression which are effective in allowing a considerably
better reproduction, than that afforded by the original for-
mula, of the experimental reaction cross-sections at low
energies.

2 A semiclassical calculation of heavy-ion

reaction cross-sections

The Karol model [8] is a generalization of the semiclas-
sical optical model of Fernbach, Serber and Taylor [20]
and expresses σR by means of the transparency function
T (b), i.e. the probability that at an impact parameter b
the projectile goes through the target without interacting:

σR = 2π

∫

∞

0

(1− T (b)) bdb . (1)

T (b) is evaluated considering the nucleon-nucleon colli-
sions in the overlap region of the projectile and the target.

The calculation of T (b) and the main assumptions of
the model are described in the original paper [8]. Here we
simply remind what is needed to present our modifica-
tions.

Considering a coordinate system with origin in the cen-
ter of the target nucleus and the z-axis along the beam
direction, for T (b) one has

T (b) = exp

(

−
∫

∞

−∞

Q(b, z) dz

)

, (2)
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where the thickness function Q(b, z) gives the interaction
probability per unit path length [21].

In order to get an analytical solution for σR, the target
and projectile density distributions involved in the expres-
sion of Q(b, z) are assumed to be Gaussian:

ρ(r) = ρ(0) exp
(

−(r/a)2
)

. (3)

In the original paper a distinction was made between light
(A ≤ 40) and heavy (A > 40) nuclei. We do not retain
such assumption and for all nuclei we choose the param-
eters ρ(0) and a to reproduce in the surface region the
Fermi nuclear density distribution

ρ(r) = ρ0 [1 + exp ((r − c)/d)]
−1

, (4)

where, with reference to the original notation of Karol [8],

d =
t

4.4
. (5)

The parameters t and ρ0 are kept independent of the par-
ticular considered nucleus and their values are taken equal
to 2.4 fm and 0.17 nucleons/fm3, respectively, while the
half-central-density radius c is evaluated for each nucleus
by imposing that

∫

∞

0

∫ π

0

∫ 2π

0

ρ0

1 + e(r−c)/d
r2 sin θ drdθdφ = A . (6)

The found c values range from 0.954 A1/3 fm for 12C to
1.095 A1/3 fm for 208Pb. The mass dependence of r0 =
c/A1/3 is shown in fig. 1.

The Gaussian distributions (3) are not normalized
(i.e. their integration does not provide the correct number
of nucleons of the considered ion). However, as noted by
Karol [8], they give the correct number of nucleons in the
surface region of the nuclei, which —in practice— is the
only part of the density distribution which affects the nu-
merical calculation of the reaction cross-section. The use
of Gaussian density distributions provides the following
analytical expression for T (b):

− ln (T (b)) =
π2σ(Enucl)ρT (0)ρP (0)a

3
T a

3
P

a2
T + a2

P

× exp
(

−b2/(a2
T + a2

P )
)

, (7)

where the subscripts T and P refer to the target and the
projectile, respectively, a and ρ(0) are the Gaussian dis-
tribution parameters, the expressions of which in terms
of ρ0, c and t are given in table 1, and σ is the average
nucleon-nucleon cross-section:

σ(Enucl)=

[(

ZT
AT

)(

ZP
AP

)

+

(

NT

AT

)(

NP

AP

)]

σfree
pp (nn)(Enucl)

+

[(

ZT
AT

)(

NP

AP

)

+

(

ZP
AP

)(

NT

AT

)]

σfree
np (Enucl) ,

(8)

where Enucl = ELab/AP , being ELab the projectile energy
in the laboratory, and σfree(Enucl) are the free nucleon-
nucleon cross-sections. This essentially means that one

Fig. 1. Variation of r0 = c/A1/3 with the ion’s mass number.

Table 1. Parameters of the Gaussian nuclear density distribu-
tions.

a ρ(0)

(

(4ct+ t2)/k
)1/2 1

2
ρ0 exp(c/a)

2

c is obtained from (6)
t = 2.4 fm ρ0 = 0.17 nucleons/fm3

k = 4 ln 5 = 6.43775 . . .

assumes that the projectile nucleons, with energy Enucl,
interact independently from each other with the target nu-
cleons. For the free nucleon-nucleon cross-sections we use
the expressions given in [14] (at Enucl > 40 MeV) and [22]
(for σfree

np at Enucl ≤ 40 MeV). We take σfree
pp (nn) = σfree

np /3

at Enucl < 20 MeV.
The use of (7) in (1) leads to the following expression

for the reaction cross-section:

σR = π(a2
T + a2

P ) (E1(χ) + lnχ+ γ) , (9)

where γ = 0.5772 . . . is Euler’s constant,

χ =
π2σ(Enucl)ρT (0)ρP (0)a

3
T a

3
P

a2
T + a2

P

, (10)

and E1(χ) is the exponential integral [23]

E1(χ) =

∫

∞

χ

e−u

u
du . (11)

Karol showed that expression (9), with his original
parametrization, allows one to satisfactorily reproduce σR
for many heavy-ion reactions at incident energies of a few
GeV/nucleon [8]. However, it works much less satisfacto-
rily at low energies where it overestimates sizeably the
known experimental values of σR. This shortcoming was
noted by many authors who worked out various ameliora-
tions of the original Karol’s formula.

Charagi and Gupta [14] modified the formula by in-
troducing a Gaussian finite-range interaction and above
all a Coulomb factor reducing the reaction cross-section
at low energies. They however did not introduce a physi-
cally important effect such as the limitations imposed by
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the Pauli principle (PP) which at low energy forbids many
nucleon-nucleon interactions.

A way to consider the medium effect was proposed
in [17] using a phenomenological formula for the in-
medium nucleon-nucleon cross-section. A similar approach
has been also recently adopted in [19], where a lin-
ear density-dependent form of the nucleon-nucleon cross-
section is used which reduces the free cross-section by a
quantity proportional —through an empirical density pa-
rameter β— to the interacting ion nuclear densities.

We propose in this paper to take into account the in-
medium effects on the nucleon-nucleon cross-section by
multiplying in (8) the free nucleon-nucleon cross-section
by a Pauli factor [24,25] which depends on the incident ion
energy and the Fermi energy in the two-ion overlap region.

In a local density approximation, we might define a
local value of the Fermi energy depending on the impact
parameter and the density distributions of the two inter-
acting nuclei. However, introducing in a consistent way the
PP correction would lead to a considerable complication
destroying the intrinsic simplicity of the model. Thus, we
attempt an alternative way by introducing in the expres-
sion of σ a Pauli factor depending on an average Fermi
energy EF varying with the incident ion energy.

If the two nuclei could be described as two Fermi gases
with reduced radius r0F, the average Fermi energy would
be

EF =
48.5 MeV fm2

r20F
≈ 28.7MeV , (12)

using r0F ≈ 1.3 fm. In fact, nuclei have not the sharp
Fermi gas density distributions and, considering that with
increasing energy the contribution of peripheral collisions
to σR becomes progressively dominant, we have to ex-
pect that with increasing energy the values of EF to be
used in the local density approximation may be substan-
tially smaller being proportional to [ρ(r)]2/3. The analysis
of experimental σR behavior for a significant number of
systems suggests for the EF dependence on bombarding
energy the expression

EF(Enucl) = B exp(−KEnucl) + C (13)

with B = 20.7 MeV, K = 0.06 MeV−1, and C = 8.0 MeV.
On this basis we multiply the average nucleon-nucleon

cross-section (8) by the Pauli factor

P (ξ) = 1− 7
5ξ if ξ ≤ 1

2 ,

P (ξ) = 1− 7
5ξ +

2
5ξ(2−

1
ξ )

5/2 if ξ ≥ 1
2

(14)

with

ξ =
EF

Enucl + V
. (15)

The local potential depth V is given by [24,25]

V = EF +
(

Sp(ZT , NT ) + Sn(ZT , NT )

+Sp(ZP , NP ) + Sn(ZP , NP )
)

/4 , (16)

where Sp (n) is the proton (neutron) separation energy.

Fig. 2. Reaction cross-section for different heavy-ion pairs.
The experimental values [26–32] are given by the full circles,
the theoretical estimate by the full line.

As noted before [14], the reaction cross-section expres-
sion (9) does not contain any Coulomb term taking into
account that at energies approaching the Coulomb barrier
the two-ion nuclear interaction is reduced or even forbid-
den. In order to preserve the simplicity of the formula, we
simply introduce the classical factor for the Coulomb term
giving

σR = π(a2
T + a2

P ) (E1(χ) + lnχ+ γ) (1− VC/Ech) (17)

where

Ech = Enucl
APAT
AP +AT

(18)

and, using the expression suggested by [6],

VC =
ZPZT e

2

RP +RT +D
−

QRPRT
RP +RT

(19)

with D = 3.2 fm,

Ri = 1.12A
1/3
i − 0.94A

−1/3
i fm i = P, T , (20)

and Q = 1.0 MeV fm−1.
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Fig. 3. Comparison between our reaction cross-section esti-
mates (full line) and the predictions by Optical Model calcu-
lations (empty circles) using parameters from a best fitting
of elastic scattering differential cross-sections [33]. Where we
report two or three values at the same energy for the Op-
tical Model predictions, they correspond to different sets of
parameters giving an equivalent reproduction of elastic scat-
tering data. The full circle in the top left frame, at ELab/AP =
30 MeV, represents the experimental value of [31].

Figure 2 shows a comparison of experimental [26–32]
and calculated reaction cross-sections for reactions in-
duced by light projectiles. The agreement is quite satis-
factory especially considering the simplicity of the model
and the use of parameters which are not fitted to the par-
ticular considered reaction.

At low energies our prediction agrees very satisfacto-
rily with the σR values calculated with the Optical Model
using parameters obtained by a best fitting of the elastic
scattering angular distributions [33], as shown in fig. 3.

3 Contributions of peripheral interactions to

reaction cross-section

It seems quite natural to use the model for evaluating —at
not too low incident energies— i) the contribution to σR
of peripheral reactions involving only a limited overlap of
projectile and target and ii) the number of projectile and
target nucleons in the overlap region.

The evaluation of the partial reaction cross-section for
the impact parameter interval (b′, b′′) is straightforward:

σR(b
′, b′′) = π(a2

T + a2
P )

(

E1(χ
′)− E1(χ

′′)

+ lnχ′ − lnχ′′
)

(1− VC/Ech) , (21)

where
χ′ = χ exp

(

−(b′)2/(a2
T + a2

P )
)

(22)

and
χ′′ = χ exp

(

−(b′′)2/(a2
T + a2

P )
)

. (23)

b

R

R

b
2

1

b

2

1

Fig. 4. Schematization of a peripheral heavy-ion interaction.

Slightly more involved is the calculation of the number
of the projectile and target nucleons in the overlap region
as a function of the impact parameter. To do that we
treat the nuclei as spheres of radius R defined through
the relation

∫ R

0

∫ π

0

∫ 2π

0

ρ0

1 + e(r−c)/d
r2 sin θ drdθdφ = A− δ (24)

using for δ the value A/100. With reference to fig. 4, the
overlap region between projectile and target is the union
of two spherical segments, one belonging to the sphere
of radius R1 (projectile) and the other to the sphere of
radius R2 (target). Their heights are h1 = R1 − b1 and
h2 = R2 − b2, where

b1 =
b2 +R2

1 −R2
2

2b
(25)

and

b2 =
b2 −R2

1 +R2
2

2b
, (26)

being b the impact parameter.
The number of interacting nucleons of projectile is

given by AP,1 +AP,2 where

AP,1 =

∫ R1

b1

∫ arccos(b1/r)

0

∫ 2π

0

ρ0

1 + exp ((r − cP )/d)

× r2 sin θ drdθdφ (27)

and

AP,2 =

∫ R2

b2

∫ arccos(b2/r)

0

∫ 2π

0

ρ0

1 + exp
(

(
√
r2 + b2 − 2br cos θ − cP )/d

) r2 sin θ drdθdφ .

(28)
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Fig. 5. Decomposition of the reaction cross-section for the interaction of a 25 MeV/nucleon 56Fe beam with 40Ca into the
contributions corresponding to subsequent impact parameter intervals (top left) and estimates, as a function of the impact
parameter, of the total number of nucleons in the overlap region (top right) and the number of the projectile’s (bottom left)
and target’s (bottom right) nucleons which act as spectators.

Substituting the subscripts P and 1 for T and 2, respec-
tively, we obtain from (27) the number of target nucleons
in the spherical segment of height h2 and from (28) the
number of those in the spherical segment of height h1.

An example of the results which one gets is illustrated
in fig. 5 for the interaction of a 25 MeV/nucleon 56Fe beam
with 40Ca. The top left frame shows the decomposition of
σR into the contributions of subsequent impact parame-
ter intervals. The black area is the expected contribution
of complete fusion reactions, tentatively evaluated using
the critical angular momentum predicted by the rotating
liquid drop model [34]. The top right frame shows the to-
tal number of nucleons in the overlap region as a function
of the impact parameter. The bottom left (right) frame
shows, as a function of the impact parameter, the number
of the projectile (target) nucleons which act as spectators
and constitute the projectile-like (target-like) fragment.
These results are representative of the fact that already
at Enucl = 25 MeV most of the reactions occur at large
impact parameters and involve a number of nucleons sig-
nificantly smaller than the total nucleon number.

4 Conclusions

The inclusion of an average Pauli blocking factor and
the classical Coulomb factor into the analytical expression

proposed by Karol [8], with the use of the parametrization
proposed above, allows one to reproduce satisfactorily the
reaction cross-section for the interaction of a large num-
ber of nucleus pairs. The decomposition of the reaction
cross-section into the contributions corresponding to sub-
sequent impact parameter intervals suggests that at inci-
dent energies exceeding few tens of MeV/nucleon most of
the reactions occur at an impact parameter substantially
larger than the sum of the half-central-density radii of the
interacting nuclei and involve a relatively small number of
nucleons.
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